Answers
The answer to Q 3:
1. The Laplace Principle:
Step 1: Calculate P for each row.
n= 3 (Three alternatives) | |||||
P= 1/3(P1+P2+P3) | |||||
State of Nature | |||||
S1 | S2 | S3 | Expected Payoff | ||
A1 | 50 | 80 | 80 | 1/3(50+80+80) | |
A2 | 60 | 70 | 20 | 1/3(60+70+20) | |
A3 | 90 | 30 | 60 | 1/3(90+30+60) | |
Step 2: Select the maximum Pay off from the expected payoff
State of Nature | ||||
S1 | S2 | S3 | Expected Payoff | |
A1 | 50 | 80 | 80 | 70 |
A2 | 60 | 70 | 20 | 50 |
A3 | 90 | 30 | 60 | 60 |
Chosen Alternative A1.
2. The Maxi-max Rule:
Step 1: Find the maximum of each row.
State of Nature | ||||
S1 | S2 | S3 | Maximum Payoff | |
A1 | 50 | 80 | 80 | 80 |
A2 | 60 | 70 | 20 | 70 |
A3 | 90 | 30 | 60 | 90 |
Step 2: Select the maximum from the column of maximum pay off.
State of Nature | ||||
S1 | S2 | S3 | Maximum | |
A1 | 50 | 80 | 80 | 80 |
A2 | 60 | 70 | 20 | 70 |
A3 | 90 | 30 | 60 | 90 |
Chosen alternative: A3 S1.
3. The Hurwicz Rule:
Step 1: Identify the maximum and minimum of each row:
State of Nature | |||||
S1 | S2 | S3 | Maximum | Minimum | |
A1 | 50 | 80 | 80 | 80 | 50 |
A2 | 60 | 70 | 20 | 70 | 20 |
A3 | 90 | 30 | 60 | 90 | 30 |
Step 2: Calculate P for each alternative.
State of Nature | ||||||
S1 | S2 | S3 | Maximum | Minimum | H | |
A1 | 50 | 80 | 80 | 80 | 50 | 72.5 |
A2 | 60 | 70 | 20 | 70 | 20 | 57.5 |
A3 | 90 | 30 | 60 | 90 | 30 | 75 |
p= α*maximum+(1-α)*Minimum |
For A1, P=0.75*80+(1-0.75)*50 |
For A2, P = 0.75*70+(1-0.75)*20 |
For A3, P = 0.75*90+(1-0.75)*30 |
Step 3: Select the maximum payoff from column H
The highest payoff is with alternative A3.
.