## Answers

3.

Variable Cost per unit = ($9000-4500)/(750-150) = $7.50 per Jersey

Fixed Costs = $9000 - 750 x 7.5 = $3375

4.

Cost for 480 Jersey's = $3375 + 480 x $7.5 = $6975

5.

SUMMARY OUTPUT | ||||||||

Regression Statistics | ||||||||

Multiple R | 0.94925 | |||||||

R Square | 0.901076 | |||||||

Adjusted R Square | 0.891184 | |||||||

Standard Error | 551.9093 | |||||||

Observations | 12 | |||||||

ANOVA | ||||||||

df | SS | MS | F | Significance F | ||||

Regression | 1 | 27745737 | 27745737 | 91.08794 | 2.43E-06 | |||

Residual | 10 | 3046038 | 304603.8 | |||||

Total | 11 | 30791775 | ||||||

Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |

Intercept | 3414.056 | 362.5764 | 9.416103 | 2.75E-06 | 2606.186 | 4221.927 | 2606.186 | 4221.927 |

Number of Jerseys | 8.216151 | 0.860871 | 9.544 | 2.43E-06 | 6.298011 | 10.13429 | 6.298011 | 10.13429 |

6. Total Cost = $3414.06 + $8.22 x Number of Jersey's

7. Cost for 625 Jerseys = $3414.06 + $8.22 x 625 = $8551.56

.