To show that
#8sin^2thetacos^3theta=costheta-costhetacos(4theta)#
#8sin^2thetacos^3theta=costheta(1-cos4theta)#
Dividing by costheta
#8sin^2thetacos^2theta=1-cos4theta#
#1-cos4theta=2sin^2(2theta)#
#8sin^2thetacos^2theta=2sin^2(2theta)#
#2sin^2(2theta)=2(sin2theta)^2#
#sin2theta=2sinthetacostheta#
#2(sin2theta)^2=2(2sinthetacostheta)^2#
#2sin^2(2theta)=2xx4sin^2thetacos^2theta#
#2sin^2(2theta)=8sin^2thetacos^2theta#
#1-cos4theta=2sin^2(2theta)#
#1-cos4theta=8sin^2thetacos^2theta#
#costheta(1-cos4theta)=costheta(8sin^2thetacos^2theta)#
Interchanging
#8sin^2thetacos^3theta=costheta-costhetacos(4theta)#